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Abstract. We consider time and space dependence of the Ising spin correlation function in a
continuous one-dimensional free-fermion model. By the Ising spin we imply the ‘sign’ variable,
which takes alternatingt1 values in adjacent domains bounded by domain walls (fermionic
world paths). The two-point correlation function is expressed in terms of the solution of the
Cauchy problem for a nonlinear partial differential equation, which is proved to be equivalent
to the exactly solvable Landau-Lifshitz equation. A new zero-curvature representation for this
equation is presented.

In turn, the initial condition for the Cauchy problem is given by the solution of a nonlinear
ordinary differential equation, which has also been derived. In the Ising limit the above-
mentioned partial and ordinary differential equations reduce to the sine-Gordon and @&inlev
equations, respectively.

1. Introduction

In this paper we continue to study correlation properties of spinless nonrelativistic fermions,
which propagate in a line and can appear and annihilate in pairs. The model Hamiltonian
is given by [1]

Y e 4 dy*tdy . (dyt | dy

5—/Oodx{mb w+dxdx+lg<dxw +dx¢)} (1.1)
where ¥ (x) and ¥ (x) are canonical Fermi fields{y (x), ¥ " (x")} = §(x — x’). The
chemical potentialx takes discretetl values, whereas the paramejgelis continuous:
0 < g < oo. A typical pattern of fermionic world paths is shown in figure 1. Well
known parallelism of the quantum field theory and statistical mechanics [2, 3] allows one
to interpret such patterns as possible configurations of domain walls in a two-dimensional
statistical mechanical system. The Euclidean time variahike then treated as the second
space variable in the plane. Let us suppdsesymmetry is broken in domains, and denote
by o (x, t) the corresponding order parameter—Ising spin, which takes alternatinglues
in adjacent domains (see figure 1). The subject of our interest is the two-point correlation
function of the Ising spin order parameter

Px, 1) = {o(x, )0 (0, 0)). 1.2)

Here () denotes either the ground-state average in the fermionic model, or the Gibbs average
in its statistical mechanical counterpart.

1 E-mail address: Ittt@ifttp.bas-net.by
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Figure 1. Fermion world paths=£ domain walls) and Ising spins corresponding to Hamiltonian
(1.1). At points 1 and 2 the total number of fermions changes.

The problem outlined above is motivated by the theory of the incommensurate soliton
liquid phase, which takes place in lattices of atoms adsorbed on a crystalline substrate [4, 5].
In the simplest case the substrate forms an anisotropic periodical potential relief for adsorbed
atoms, say,cog2rx/b). The commensurate phase is characterized by an infeggual
to the ratio of the lattice periods of the adsorbed atoms and the substrate potential. If
p = 2, there are two equivalent-in-energy configurations of the overlay lattice shifted with
respect to one another by the substrate lattice péricgb, the commensurate phase béiiag
degenerated can be characterized by the Ising spin order parametexp(riu, /b) = +1,
whereu, is the displacement of the lattice of adsorbed atoms.

As the concentration of adsorbed atoms changes, they undergo the transition into the
incommensurate phase. Closely enough to the transition point, the incommensurate phase
may be conceived as commensurate regions where 1 ando = —1 separated by
domain walls. At zero temperature, domain walls are parallel toytais and form a
periodical lattice in thex-direction incommensurate with the substrate periodicity. At a
finite temperature, domain walls bend and collide with each other. So, the generic state
looks like the pattern in figure 1. Points 1, 2 in figure 1, where a domain wall turns backward,
correspond to dislocations in the lattice of adsorbed atoms [5, 6]. It is clear, that fermionic
models provide a convenient and powerful tool for looking into the physics discussed above,

and indeed they have been widely used [5-8]. Calculations of thermodynamic quantities and
correlation functions of fermionic fields (i.e. fermionic Green functions) become especially
simple in free-fermion models. On the other hand, the observable quantity is the Ising spin
order parametes (x, ), rather than fermionic fields. Indeed, x-ray or neutron scattering

experiment measures tikedependent susceptibility (k) being just the Fourier transfer of
the correlation function (1.2).
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Generally speaking, interpretation of scattering experiments in incommensurate crystals
is known to be quite a difficult problem, especially near the phase transition point [9, 10].
So, it is desirable to find the exact correlation functiBx, ) and its Fourier transform
x (k) for the soliton liquid phase, at least in a simple free-fermion model (1.1).

Before proceeding to the results obtained, it is worthwhile to make two notations
concerning this model.

(i) valuesu = +1 andu = —1 of the chemical potential correspond to ordered
(commensurate), and disordered (incommensurate) phases, respectively. A well pronounced
soliton lattice appears in the disordered phase= —1 for small enough values of:

g < 1. Correlation function (1.2) in this case is essentially anisotropic and oscillates in
x. Forg = 0 it is known [11], that the leading term in the large-distance asymptotics of
(1.2) is proportional tax~*?sinx. In the opposite limitg — oo, fermionic model (1.1)

is equivalent to the two-dimensional Ising model in the critical region. Here correlation
function (1.2) reduces to the well known expressions obtained by M&tCay [12].

(i) The free-fermion model we consider is closely related with several models studied
in the literature. We shall mention two of them. First, model (1.1) is equivalent to the
XY spin chain in the double scaling limit introduced by Vaidya and Tracy [13]. These
authors discovered oscillatory behaviour of the correlation functions in the double scaling
XY model. Jimboet al [14] calculatedn-point correlation functions of Pauli matrices in
this model and established their relationship to some ordinary differential equation. In the
limit ¢ — O their equation reduces to the Pair8eV transcendent. For further details see
[1]. Second, model (1.1) is just the continuous limit of the discrete fermionic model used
by Bohr [6] to describe the effect of dislocations on the commensurate—incommensurate
phase transition near the poipt= 2. In particular, Bohr calculated the average Ising spin
value (o) in the ordered (commensurate) phase= 1. In the continuous limit his result
reduces too) = (14 g2~ V8.

Several techniques have been developed to determine correlation functions in exactly
solvable models [15, 16]. One of them [16] involves three steps. (i) The correlation
function is expressed as the determinant of a Fredholm integral operator. (ii) Determinant
representation is then used to write down a nonlinear differential (or integro-differential)
equation associated with the correlation function. (iii) The large-distance asymptotics of
the correlation function are analysed by use of the obtained equation and related Riemann—
Hilbert problem.

In the previous paper [1] we completed step (i), and started to perform step (ii). Namely,
for model (1.1) the determinant representation for the correlation function (1.2) was obtained
in both orderedu = 1 and disorderede = —1 phases. In the ordered phgse= 1 we
asserted without proof a relationship of the correlation function (1.2) with a certain nonlinear
partial differential equation.

This paper is devoted to the second step, which is completed here for both phases
uw = £1. The emphasis is on the more complicated and physically interesting disordered
phasex = —1. In the half-planer > 0, —oo < x < oo, we derive the Cauchy problem,
which determines the correlation functioh(x, t). The Cauchy problem consists of the
nonlinear partial differential equation, and initial conditions for it.

The partial differential equation describing evolution of the correlation fundtion )
in T is the same as that obtained previously in the ordered phase [1]. We prove, that this
equation is equivalent to the well known exactly solvable Landau—Lifshitz equation, which
describes a classical anisotropic one-dimensional ferromagnet [17—19].

The initial condition on the line = 0, —oco < x < oo for the Cauchy problem is given
by the solution of a nonlinear ordinary differential equation of the fourth order. In the Ising
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limit ¢ — oo it reduces to Painlév1ll in agreement with McCot al [12].

The paper is organized as follows. In section 2 we describe briefly the determinant
representation foP(x, ). We then expres®(x, 7) in terms of the solution of the related
Fredholm integral equations. In section 3 we formulate the Riemann—Hilbert problem, which
is equivalent to the above mentioned equations. In section 4 the obtained Riemann—Hilbert
problem is used to derive a matrix identity, which provides the zero-curvature representation
for an exactly solvable nonlinear partial differential equation. Similar analysis performed
in section 5 for the case = 0 leads to a nonlinear ordinary differential equation. Results
obtained in sections 2-5 relate to the disordered plase—1. Section 6 describes their
modification in the ordered phage= 1.

We put some cumbersome formulae and extended computations into the appendices.
In appendix A we prove the equivalence of the obtained nonlinear partial differential
equation with the Landau-Lifshitz equation. In appendix B we derive explicit expressions
for elliptic matrices providing the zero-curvature representation for the above-mentioned
equation. Elliptic matrices, which are related to the ordinary differential equation described
in section 5, are given in appendix C.

2. Determinant formulae and integral equations

It is usual practice to start studying correlation functions in exactly solvable models by
expressing these functions as determinants of Fredholm linear integral operators [16]. For
the correlation function (2.1) such a determinant representation was obtained in [1]. Here
we describe this representation and then use it to express the logarithmic derivative of the
correlation function in terms of solutions of linear Fredholm integral equations of the second
kind.

First of all, a remark concerning notation is necessary. The Hamiltonian (1) in [1]
seems at first sight somewhat more general than (1.1). However, the former reduces to the
latter after rescaling — xlo, ¥ — ¥/lo, ¥ — ¥/, € — EIQ, if o = (s/12)Y2,
= sign(Q), g = T/(4s|QD">.

We denote bys (x) the unitary operatob (x), corresponding to the Ising spin order
parametew (x, ). This operator can be written in terms of the fermionic fields [1]

é(x) =exp{i7t / dxﬂ/ﬁ(x’)gb(x’)}
where the boundary condition(x, t) — 1 for x — —oo is supposed. Relation (1.2) then
takes the form

Px, 1) = (®|U(—1)6 (x)U ()5 (0)| D). (2.1)

Here |®) denotes the Hamiltonian ground stafe(r) = e ¢ js the Euclidean evolution
operator.

The determinant representation for the correlation function (2.1) in the disordered phase
u = —1reads as [1]P(x, t) = lims_ o Ps(x, 7), where

Ps(x, T) = C(8) det[1+ Dy(x, 1)].

HereC () is the constant factonf),;(x, 7) is the linear integral operator acting on a function
f(p) in the following way

. © dk .
Ds(x, ) f(p) = / > Do f () exp(—3ix(p + k) — 3r[w(p) + w®]}
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with

1AW AW _
o= 5% [A(p) A(kJ A _[
w(p) = [(1+ p?? + (2gp)3 "%

The well known procedure [14] allows one to obtain Fredholm integral equations from
determinant formulae. Denote by Tr the trace of a linear integral operator

. d
TrLz/i e

o]

w(p) 17°
p2 + 82

whereL, is the operator kernel:
N © dk
Lf(p)= /_oo szkf(k)~

Differentiating the equality Indet[+ D;(x, t)] = TrIn[1 + Ds(x, 7)], we obtain

L3Ds(x, r))

- 2.2)

9 Ps(x, ) =Tr ((1+ Ds(x, 7))~
0x

It is essential for further analysis, that the kernel of the operafy(x, 7)/dx factorizes

dDs(x, i
(#) = l[611(11?)0t2(k) — az(p)ay (k)] (2.3)
X o 2
where
a1(p) = A(p) exp[—'%” - ””Z(p )} ax(p) = [A(p)]‘lexp[—'%” - ””2(” )] .
Combining (2.2) and (2.3) we obtain
9 i [~d
Py INPs(x, 1) = 12/_00 Ep[m(p)az(p) — uz(pai(p)] (2.4)

whereu;(p), j = 1, 2 denote solutions of Fredholm integral equations of the second kind:

(1+ Ds(x, 0)uj = a j=12 (2.5)

3. Riemann-Hilbert problems

In this section we derive a Riemann—Hilbert problem on the complex torus, which is
equivalent to integral equations (2.5), and then proceed to the dimit0.
First, let us rewrite equations (2.5) in terms of new variables. Set

v (p) = u; (P)A(p) exp['%” + “”2(” )}

z(p)=/pd—k 2w=/ood—p w/=/pld—p

o w(k) —o0 W(P) —p w(p)
i(g—ve?—-1 forg>1

pl_{ig—f-\/l—ig2 forO<g <1

Herez is the new independent variablep 2nd 20" are the primitive periods of the elliptic
function p(z), p1 is one of four zeros of the functiow?(p) = (p? — 1)?> + (2gp)°. For

(3.1)
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or

Figure 2. Fundamental regiof for quasiperiodical functions; (z). Poles ofv; (z) are indicated.

g > 1 the period 2’ is purely imaginary I’ > 0, e’ = 0. For O< g < 1 the period
20’ gains the real parthe’ = w. In the new notation equations (2.5) read as
B ©dZ w) [AZ(Z)
. — + _

vo=a@+ [ 5 P@) + p@ | 22
wherej = 1,2, d1(z) = A%(2), d2(z) = 1.

Further, denote by the open region in the-plane bounded by the parallelogram of
periods shown in figure 2.

— 1} expl—ixp(z) — tw(z)]v; (@) (3.2)

Lemma. Let ¢ > 0. Then functions;(z), j = 1, 2 which solve equations (3.2) can be
analytically continued from the interv@l-w, w) into the wholez-plane, where they obey
the following conditions.

(i) vj(z + 20) = v; (D).

(i) vj(z — 20') = v (2) — 2ivj(z — ') €XP[ixp(z) + Tw(D)].

(iii) Functionsv;(z) are meromorphic in the open regidh

(iv) Functionsv;(z) have exactly four simple poles ifi in the pointsb; > = =ia,
b34 = +(w' —ia), which are the zeros of the functiopq(z) +8%]: p(b1) = i8. Moreover,

Res—_;,v;(z) = Res_,v;(2) Res_,v;(z) = Res—,v;(2).
(v) Except for the pole$;,i =1, ..., 4, functionsv;(z) are continuous inm.
(Vi) vj(@) =1, vj(w — & +i0) = (—1)/.
Conversely, a pair of functions obeying (i)—(vi) solve equations (3.2).

Remarks.
(1) By virtue of (ii), functionsv; (z) have essential singularities at the poif2s+ 1)w+
mo', n,m € Z, m # 0.
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(2) Forz — w + i0 statement (vi) can be further detailed:

©d
0@ =1- (- / 2y (p)laa(p) — ax(p)] + Oz — )?
—o0 3.3)

. > d
0z —&) = (<1 — (2 - ) / s (p)laap) + ax(p)] + O —

(3) For realx and t, functions v;(z) obey the symmetry property;(z; x,7) =
vi (2", —x, 7), where* denotes the complex conjugation.

Proof of the direct statement of the lemma is straightforward. To prove the converse
statement, we rewrite the integral on the right-hand side of (3.2) as

/w+€ % u)(z/) |:A2(Z) B
—wte 4TI p(2) + p(2) | A%(2)

1] [vj(@ + &) — v — )]

e [

arte 4i p(2) — p(2) | A%(2)
Here € is a small positive number, the parallelograii + ¢) is obtained fromI" by
translation inz’" by ¢, (" + ¢) denotes the parallelogram boundary. In deriving (3.4)
we used (i), (i) and the translation property common for the functipt®, w(z), and
A%(2): f(z+ ) = —f(z), wheref = p, w, A%. Nine poles (in thez’ variable) of the
integrand on the right-hand side of (3.4) &e i = 1,...,9. Four of them were given in
(iv), and the remaining five are

1} v; (). (3.4)

bs =z bg =0 —z2 b =w bs=w— o bg=w+w.

Among these poles onlys, b7, bg and bg contribute to the integral. Really, residues

in b1, cancel with those inbs4 owing to (iv), and the residue img vanishes since

A%(z) = —A%(w — 7). Contributions from pole#s andb; give v;(z) and [-1— A%(2)]/2,
respectively. We have taken into account (vi) and equalifyw) = 1. A more subtle
analysis is needed for poles iy and bg, which lie in the integration contowd(I" + ¢).

Near these points, integrals in (3.4) must be understood in the sense of the Cauchy principal
value. Alternatively, we may divide poles i, i = 8,9 into two parts according to the
Plemel formula

1 1 1 1
- = — + — | .
Z—b,’ 2 Z_b[+|0 Z_b,‘—lo
Poles in(bg — i0) and in (bg + i0) are removed from(I" + ¢). The total contribution of
poles in(bg + i0) and in (bg — i0) is [-1 + A%(z)](—1)/ /2. Collecting all terms coming
from bs, b7, (bg+i0) and (bg —i0), we obtainv;(z) — a;(z), completing the proof.
Thus, conditions (i)—(vi) characterize functiongz) completely. These conditions can

be reformulated as a Riemann—Hilbert problem. We set

1 v1(2) v2(2) 1 -1
@)= 2 (Ul(Z —o) vz —a)/)) (1 1 > '

Denote byI'. the upper half of the parallelograi, i.e. 'y = {z € I'|z > 0}. In terms
of the matrix X (z) statements (i)—(vi) of the lemma transforms to the following.

Problem 1.
() X(z 4 2w) = X(2).
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(i) X(z — ') = M(2)X(z) where

0 1
M) = (1 2iexplixp(2) + fw(z)]>' (3-5)

(iii) X (z) is meromorphic in the open regidn,.

(iv) X(z) has exactly two simple poles i, at the pointsh; = i« andbz = o' — i,
which are the zeros of the functiop(z) — i§]. Moreover, Res.;, X (z) = Res—,, X ().

(v) Except for the pole$s, b3, X (z) is continuous inr .

(Vi) X(w+1i0) = I, where! is the unit matrix.

Conditions (i)—(vi) for the matrixX (z) define the Riemann—Hilbert problem in the
complex torus. By construction, this problem is equivalent to the integral equations (3.2).
Let

o (2 — )"
X(2) = I+;Txm (3.6)
be the asymptotic expansion of the mat¥xz) at z = o for z € I'y. Then, combining
(2.4) and (3.3), we have

O Py, 7) = — - tr(X109) 3.7)
0x 2

where trA denotes the trace of ax22 matrix A: trA = Aq1 + A, We use the standard
notation for the Pauli matrices

022 we(13) ae(3 3

Now let us proceed to the lim& — 0. Itis clear, that in this limit the matriX (z; x, 7)
still satisfies conditions (i), (ii) and (vi). However, conditions (iii) and (iv) must be modified,
since the poles located atie merge to the origin to the limi§ — 0. One could expect
to obtain the second-order pole as a result. However, accurate analysis of equations (3.2)
shows that in fact the limiting matriX (z; x, t) has the first-order pole at the origin= 0.

Thus, the Riemann-Hilbert problem which defines the matrix) in the limit§ — 0
is as follows.

Problem 1.
() X(z+ 2w) = X(2).
(i) X(z —w) = M(2)X(z) whereM(z) is given by (3.5).
(iif) X(z) is meromorphic in the open regidn, shown in figure 3.
(iv) The single pole ofX(z) in 'y is simple and lies in the origip = 0.
(v) Except for the origing = 0, X (z) is continuous inr';.
(vi) X(w+1i0) =1.

Remark.If z =0 andx > 0, thenX (z) = 01 X*(z*)0o1.

In the limit § — O, relation (3.7) expresses the logarithm derivative of the correlation
functionP(x, t) in terms of the solution of the Riemann—Hilbert problem II. From here on
we shall refer (i)—(vi) to corresponding items in problem II.
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Figure 3. Fundamental regioi’; for matrix X (z) in the limit § — 0. Poles ofX(z) are
indicated.

4. Connection with partial differential equations

In this section we study the dependencexoandt of the matrixX (z; x, t), which solves
problem Il. In what follows we shall also use the abbreviated notatiat) for this matrix.

First, let us consider the function d€tz). Since detM(z) = —1, conditions (i)—(vi)
ensure, that deX (z) is the elliptic function having iy a single second-order pole at the
origin. Translation properties of d&t(z) are: detX (z) = detX (z + 2w) = — detX (z + &').
Therefore, deX (z) can be factorized as

detX (z: x. 1) = C(x, 1)ty [%ﬁi’”)} on [%} [91(2/2)] 2 (4.1)
with
h(u) =iexp |:—irr <u — %>i| V3 <u + 1; t) Da(u) = nEXZ:eX[XZninu + min®%)
(4.2)
and
71(x, T) + 22(x, 7) = . 4.3)

Here ¢, 3(u) are 6-functions with the quasiperiod = w'/(2w), the coefficientC(x, 7) is
determined by the relation d&tw + i0) = 1. So, the matrixX (z) degenerates (having
rank 1) at the pointg >(x, 7) + 2nw + mo', (m, n € Z), which are related by (4.3) and
move under changes afandr.

Define four 2«2 matricesE(z; x, 7), Y(z; x, 1), U(z; x, 7), V(2; X, T), or in abbreviated
notation,E(z), Y (z), U(2), V(2):

E@) =exp(-Zp@ +m0() Y@ = E@XE) (4.4)
U@ = vl )8Y(Z) _lp f) X 2)0sX (@) + X1z )3X(Z) (4.5)
Vi) =Yz )aY(Z) w;Z) X 12)osX (2) + Xz >8X(Z). (4.6)

Translation properties of the above matrices are
E@) =E@+20w) =[E@z+o)] ™
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Y(2) =Y(z+ 2w) Y(z—a/):Y(z)(? _12i)

U =U(z+20) =U(z+ o) (4.7)
V(iz) =V(z4+2w) = V(z+ o). (4.8)

Moreover, matriced/(z) and V(z) are meromorphic in the-plane and, hence, elliptic.
Relations (4.5), (4.6) can be rewritten
Y (z;x, 7) oY (z;x, 1)

=Y(zx,0)U(z; x, 1) ——=Y(zx,1)V(z;x,T)
0x 0T

as a system of linear differential equations for the matfik; x, t). Its compatibility
condition
aU(z;x, ) 0V(z;x,7)
ot ax

has the form of the zero-curvature relation, which is crucial in the Faddeev’s school version
of the inverse scattering method [17].

It follows from (4.5), (4.6), (4.1) that elliptic matrice$(z), V (z) have inI'; a stable
pole in w, and two simple moveable poles at the pointér, 1), z2(x, T) related by (4.3).
Combining (vi) with (4.4)—(4.8), we come to representations

+[V(zx,1),U(z;x,7)] =0 (4.9)

i 0z 0z
U(z) = =030 (2 — @) — P\——=£(z — 21) — Pa—22(z — 22) + Up (4.10)
2 0x 0x
1 0z 0z
V(z) = —503 (z—w)+ Bi(z —w) — Lla—rlé“(z —2z1) — Lza—:i(z -2+ Vo (411)
with
0z1 dzo o3
p 2t p 22 193 4.12
Tox T %% T 2 (4.12)
9 3
L, %2 p (4.13)
ot 0T

Here p (z) is the Weierstrass elliptic function with primitive period® and ', and ¢ (x)
is the corresponding-function. Since rank’'(z;) = 1, j = 1,2, operatorsP;, L; are
projectors: P? = P;, L7 = L;. Furthermore, images df; and L; coincide:

ImP; =ImL; =kerY(z;) = kerX(z;). (4.14)

Relations (4.3), (4.5), (4.6), (4.9), (4.1) allow us to obtain explicit expressions (B.8)—(B.12)
for matricesP;, L; (j = 1,2), Uy, Vo. As shown in appendix B, these matrices depend
on x and t via two functionszi(x, t), and a(x, t), which solve the following dynamic
equations

21 = —4ria'z) (4.15)
.1 f Z] dlnx
= J[g 0(z1 — : : -2
o 2[@ (z1) + 9 (21 — @) + p (@)] + 16(2;_)272 |:27”Z€|_ dx i|
21 (f NELAY
L _Z (L)Y a+2r — 4.1
+ 2 20x \ r d+2r% ox (4.16)

wherer, f and A are given by (B.14). Partial derivatives with respectxtand t are
denoted by prime and dot, respectively.
The inverse statement is also valid.
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Theorem. Let functionszi(x, t) and a(x, ) solve equations (4.15), (4.16). Letx22
matricesU(z; x, ), V(z; x,t) be given by relations (4.10), (4.11), (B.8)—(B.12), (4.3).
Then these matrices obey (4.9).

So, equations (4.15), (4.16) allow the zero-curvature representation (4.9), which
indicates their integrability by the inverse scattering method [17]. The standard procedure

described in [17] leads to the infinite set of integrals of motidp:n = 1,...,00. The
first one is given by

11:/ dxH (x) (4.17)
where

2 7\2
H(x):g{n [1 + 42

2 4
T(x, 1) =ia'(x, 1)/79(x, 7).

Up to this point we considered evolution in the Euclidean timeéNow it is convenient to
pass to the ‘Minkowski’ case replacing everywherby —iz , wherer is the new (real) time
variable. Consider (4.17) as the Hamiltonian of a classical evolution model with coordinate
z1(x) and momentumr (x) variables. The canonical Poisson brackets are supposed

2_ f— — f—
+ /=9 @) —p1— o) @(w)} (4.18)

{7 (x1), z2(x2)} = 8(x1 — x2).

As one can verify by straightforward calculation, Hamiltonian equations of the model (4.17),
(4.18) are equivalent to equations (4.15), (4.16).
The Hamiltonian density (4.18) can be rewritten in a more symmetric form

721 + 4z)?] 2(z4)? 1+ 12(11)265 (Z B g) _ $/2) N 92In A
8 1+ 4(z))? 8 2 8 dx2
(4.19)
where ¢ (z) denotes the Weierstrass function with perieglsy’/2. The two last terms in

(4.19) do not contribute to the equations of motion.
Another convenient parametrization of the model (4.17), (4.18) is

H(x) =

_ 1 12 1dinp(zy) 2 8
u= 2g[5@(m)+p(zl o) + p @)]Y? = 2 i K2 = e
X f
X = t=—F— 4.20
2/ +u 457+ 1) (4.20)
] 2 _ [/ l'dR dul2
L:}f di{u [u/2+81/u] +k2u2}
2 —00 [(u )e 4+ ZR]
where
Rw) = (1 —u®)(1 — K*u?). (4.21)

It is shown in appendix A, that the Lagrangian model (4.20) is equivalent to the
complex generalization of the Landau—Lifshitz model, for which exact integrability is well
known (see [17-19]). So, equations (4.15), (4.16) are equivalent to the Landau-Lifshitz
equations describing a classical one-dimensional anisotropic ferromagnet. Zero-curvature
representation for the Landau—Lifshitz model was obtained in papers [20, 21]. According
to the above analysis, relation (4.9) with matrices (4.10), (4.11) gives an alternative zero-
curvature representation for the same model. It should be noted, that our representation is
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quite different from that known in the literature [17]. In particular, in our representation

poles of matriced/(z) and V(z) move in thez-plane with varyingx andz. In contrast,

the standard zero-curvature representation for the Landau-Lifshitz model employs matrices

with immovable poles.

Returning to the correlation functio®(x, t), let us differentiate relation (3.7) with

respect tor, and evaluate t30 X1/0x by the use of (B.6). After straightforward calculations

we obtain, finally
32InP(x, 1:)

9x2

where H(x) is given by (4.18) or (4.19). Thus, the second logarithm derivative of the

guantum correlation functiorP(x, t) is proportional to the Hamiltonian density of the

nonlinear classical model (4.17), (4.19). This model is equivalent to the Landau—Lifshitz

model (A.1)—(A.3) describing the anisotropic one-dimensional ferromagnet.

~1H(x) (4.22)

5. Initial conditions

Equations (4.15), (4.16) describe evolutiontirof parameterg;(x, ) anda(x, t) in the
region—oo < x < oo, T > 0. Here we considet-dependence of these functionsrat 0,
i.e. the initial conditions for equations (4.15), (4.16). Throughout this section parameter
will be omitted implyingr = 0.

We start from the problem I, setting= 0, x > 0 in it. Let us introduce a new elliptic
matrix W (z; x):

aY ixw X
W=yt —=-""Xlogx+x 1= 5.1
0z 2 osx + 0z ®-1)
with periods 2, «’. The system of linear differential equations
aY aY
ox 9z
is compatible under the condition
oW U
— - —+[U, W]=0. (5.2)
ax 0z

The following expansion

ix
W = _E@(z —w)o3+ Al (z —w) — $(2) + 018(z — z1) + Q28 (z — 22) + Wo (5.3)
with
A=1-01—-0>
is analogous to (4.10), (4.11). Matrice31, Q2, A, Wy depend onx, but not onz.
Evaluations analogous to those described in appendix B allow one to determine the matrix
W(z, x), and to obtain independently the matrlik(z; x). Explicit expressions for these

matrices are given in appendix C. They dependroria the functionz;(x), which solves
the following nonlinear ordinary differential equation of the fourth order:

3S
= 5.4
8z1(x) (5:4)
where the action functional is given by (cf (4.19)):
2(z%) 1+12(z))? . )
S = /dx {1+4( 7t g p(zl 2) . (5.5)
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Recall, that periods of the Weierstrass functip¢y) are reduced by a factor of 2 compared
with those ofp (z).

It should be noted, that in the Ising lim¢t — oo action (5.5) reduces to that of the
Painlee Il transcendent:

(¢)?
S— [ dxx > + cosh(2¢) (5.6)
in agreement with McCowt al [12]. Really, in this limit we haveo’'/w — 0, and
. w 8
6 (- 5) ~ 526" — 1 +Bcoshszy) (5.7)

for z; lying near the imaginary axis. Substituting(x) = ¢ (x)/4g and (5.7) into (5.5), we
obtain (5.6) to the leading (zero) order gm+.

The pointx = 0 is critical for the differential equation (5.4). The boundary condition
at this point for the functiorz1(x) reads as (see appendix C):

2 1
Ato =5+ [1 + (% - E) X+ O(x2>] (5.8)

wheren = ¢(z; 2w, @) —.

Equation (5.4) supplied with the boundary condition (5.8) determines the fungtion
completely in the interval O< x < oo. According to remark (3) on page 6195 and
the remark on page 6196, the functien(x) can be continued to negative by setting
z1(x) = z1(—x). So, the initial conditiory1(x) for the functionz(x, t) is determined in the
whole axis—oo < x < oo. Initial conditions for another function in (4.15), (4.16) must be
taken asx(x, 7).—¢ = 0 (see appendix C).

6. Ordered phase

So far we considered the correlation functidtix, r) in the disordered phase = —1.
However, minimal changes are needed to extend the results obtained to the ordered phase
u = +1. These are listed below for completeness.

¢ In the ordered phase, the determinant representatiof® or ) is given by relation
(20) in [1]. Unlike the disordered phase, any limiting procedure is not needed.

e The logarithm derivative of the correlation function is still related by (3.7) to the
matrix X (z) solving the Riemann—Hilbert problem, which is almost the same as problem II.
The only difference is in the position of the simple pole of the ma¥ix). Now the pole
lies at the point; = w + ‘”7 instead of the origin. This implies, in turn, that degenerate
pointsz; » of the matrixX (z) are now related byi(x, ) + z2(x, ) = —w + . This also
induces small changes in matricegz), V(z), W(z) which we shall not specify here. It
should be noted, that in the ordered phase explicit expressions for zetogpfchange.

In particular, relation (3.1) now transforms fa = i(y/g2+1— 1).

e Relations (4.22), (4.19), (5.4), (5.5), (5.8) which connect the correlation function to
the Cauchy problem are still valid. The only change is in the first term in the right-hand
side of (5.8). Herev/2 should be replaced bi-w + ') /2.

1 Similarly, the model defined by the Hamiltonian density (4.19) reduces to the sine-Gordon model in the limit
g — oo. For the Landau-Lifshitz model this result is well known [17].
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Appendix A

In this appendix we prove equivalence of the model defined by the Lagrangian (4.20) to
the complex generalization of the Landau—Lifshitz model of the biaxial one-dimensional

ferromagnet.
The Landau-Lifshitz model is defined by the Hamiltonian density [17]
1| [/88SY
Hy (x) = > |:(—> - J(S)] (A1)
ax

where S(x) = (S1(x), S2(x), S3(x)) is a real vector on a unit sphef(x) € S? c R:

3
S*x) =) Six) =1 (A.2)
a=1

J(S) is the diagonal quadratic form

J(S) = J1S2 4 J»55 + J3S2

J1< < s Ji+ o+ J3=0.
The equation of motion is a Hamiltonian

S ={HyL, S}

whereH, is the Hamiltonian:®,. = [ dx Hi, (x). The Poisson structure is induced by
the Poisson brackets

{Sa(x), Sp(y)} = —€apeSc(X)d(x — y). (A.3)

Heree,,. is the antisymmetric tensor normalized@s; = 1. The model described above
is known as a ‘universal’ (in a certain sense) integrable model, which contains sine-Gordon
and nonlinear Sckidinger models as the limiting cases. We shall consider the complex
generalization of the model (A.1)—(A.3) supposing, th&t) is a vector on a&omplexunit
sphere (A.2):S2 c C3.

First, let us introduce variableB(x) and *(x) on the sphere by the relations

_ S1+18, . S1—1iS
S (1- syt S A-Ss?
Since the Poisson bracket on these functions is canonical
{(W(x), ¥* ()} = —id(x —y)
apart from the factori, the action functionalS for the model (A.1)—(A.3) can be written

as
7]
S:/ dt/de(x,t)
4

with the Lagrangian densit(x, ¢) given by
L=—iv*'y — H .
Next, rewrite this Lagrangian density in terms of another pair of variabl@$ and
g*(x) which gives the stereographic projection of the spi&fe
2 . 2q* 1-gq*
A S1— 185 = q S3=—qq
14 gq* 14 qq* 1+ qq*

S1+1i8 =
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or, equivalently

2q i|l/2 . |: Zq* i|l/2
Y=——"—— Y= — .
[q*(lJrqq*) q(1+qq*)

The resulting expression takes the form
. 2q (/9 g*(¢) 12— )" +q") + 6Jqq*
q(1+q99)  (1+q99)  ql+gg9? 2 (1+qq)? ’

(A.4)

Equivalence~ implies, that we ignore terms having the structure of full derivatives in time
or in coordinate. It should be pointed out, that varialjeand ¢* which were complex
conjugate to each other whe$\(x) € R3, become independent in the considered complex
caseS(x) € C3. Varying the action corresponding to the Lagrangian density (A.4) with
respect tog*, one obtains

Jo—1

(—ig —q"YA+qq") + 29" (¢)* — > (q®—q") + 3Jq(1—qq%) =0. (A5)

This representation of the Landau-Lifshitz equation has been widely used in the study of
its soliton and multisoliton solutions (see [18] and references therein). Eliminatig
from the Lagrangian density (A.4) by the use of (A.5), we find after some algebra

1d® = [u'(x) + 3dP@)/dw)]*  (Jo = Jpu?

L>~—— A.6
2 [u2(x) + P(u)] 2 (A-6)
Here we have denoted
Jo—J 3J.
Pu) = 22 1(l+u4)—73u2 u=1/q.

Rescaling of variables

k k [Jo—J
u—)x/%u X — X t— t L — — #L
Jo—J1 Jo—J1 k

i i 2 _ _6J _ ;
with k£ obeying the relatiork — 7o5k+1=0 tranforms (A.6) into

2 [y, 1 2
[~ 1_ u [u”(x) + sldR (u)/ du] 1 k22
[u2(x) + 7R ()]

2

where R(u) is given by (4.21). This is just the Lagrangian density (4.20) obtained in
section 4.

Appendix B

Here we obtain explicit expressions for matridész; x, t), V(z; x, t) defined by (4.5),
(4.6).
Let us expand these matrices together with the elliptic functien at the point; = w:

_ log c _ nyrn)
Uz) = -2 + ;(z w)'U (B.1)
V@ = 5t ) o)V (B-2)

n=-—1

1 o0
PR =———+) (z— )Moz (B.3)
Z-w n=0
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Substitution of expansions (B.1)-(B.3), (3.6) into (4.5), (4.6) allows one to express the
coefficient matriced/™, V™ in terms ofX,. The first few equalities are

VD =iv© = g3, X4] (B.4)
vO - “1—2“3 (B.5)

. i X
U — _ir — @103 + il (B.6)

2 ox

where
1 82 -1 1 1 2

[=—732. X (Q0sX (@) = §[Xz, 03] + 3(X103X1 = X]o3). (B.7)

Relations (4.10), (4.11) give alternative (finite) expansions for elliptic matrices,
V(z). Taking into account (4.12) and (4.3), one can determine projective opewtans
(4.10) up to two parameters anda:

g’  ie? e’ e
Pr=r (_ie—a e—ie) Py=r <_ie—a df ) : (B.8)
Herer and6 are related ta; by
rcosd = 1 rsing = (4z) 7. (B.9)
One-dimensional images of operatd?sare generated by vectoes
¢ = <Vlf) Pej=¢  j=12 (B.10)

whereys » = iexp(£if + «).

Comparing (4.11) with (B.2), one can see, tiat= VY. It is evident from (B.4),
that diagonal entrances of this matrix are zero. Introducing one new paraimatercan
determine matriceg,; and B in (4.11)

L= I A-Dn L, — I A-Dy
Y\ a-n 2=\l @a-n

0 (- D (B.11)
—vED 22 g -
B=V _Zzlsme(—le“ 0 )
Here we have taken into account relations (4.13), (4.14), (B.10).
MatricesUy and Vyp can be obtained from (B.4), (B.5):
Up=—iB + 21 Pi{ (0 — z21) + 25 P2l (0 — 22)
Vo=T = 22 + 21L1¢ (@ = 22) + folat (@ = 22)
where the matriX" defined by (B.7) takes the form
e < . B12B21 iBj, — 2ir€[p (0 — 21)—p (0 — 22)] )
—iB)y + Zire [p (0 — z1)—p (0 — 22)] —B12Bn '
(B.12)

Relations (B.4), (B.6) have been used in deriving (B.12).

Thus, relations (4.10), (4.11), (4.3), (B.8)—(B.12) give explicit expressions for
matricesU (z; x, t), V(z; x, ). These matrices depend anand r via three functions
z1(x, ), a(x, 7), andi(x, 7).

Let us substitute the obtained expressions for the mattigesx, t), V (z; x, t) into the
compatibility condition (4.9). Relations between functiaiér, ), a(x, ), [(x, ) can be
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established then by putting equal to zero singular and constanteirms in (4.9). One can
verify, that all singular terms in (4.9) at the point= » vanish identically. Furthermore,
terms proportional tdz — z;)~2, j = 1, 2 vanish as well. Setting residueszn z, of (4.9)
equal to zero, we derive equations (4.15), (4.16), and equality

(2 —Dz1=2rzy f(z1) (B.13)
where
14 4(z))?]Y? 1 dInx
’Z& f= Zl/ +2r—— r=p@1—o)—p). (B.14)
4z; 2rz) dx

Relation (B.13) allows us to eliminate the functidx, ) from matricesU(z; x, 1),
V(z; x, 7). Lastly, the constant term in the Laurent expansion of (4.9) neaw does not
give new constrains oty (x, 7), a(x, ) vanishing identically.

Appendix C

Here we give explicit expressions for matricész; x) = U(z; x,1);—0 and W(z; x)
associated with the Riemann—Hilbert problem Il fo= 0, x > 0.
ProjectorsP; and P, in (4.10) are still described by relations (B.8), where parameter
is put equal to zero:
expa = 1. (C.2)
The other coefficient matrices in (4.10), (5.3) are as follows.

e jel0—9) T4 jel(=0+¢)
Oi1=p _jgl-0+e) g Q2=p ETICEY) g

Aoimomo d d 01+ 0,1 (€2
Up == Put(ea = ) = 2 Pat(z2 = ) + =
Wo = lag + o1a1 + 02a + 03a3
where
3n . d
a=—— ap = psin® —)[¢(z2 —w) — ¢(z1 — 0)] + a[zp cog6 — ¢)]
dz

a2 = —p c0%0 — )l (c1 = @) + £ (z2 — )] + 73

ix itany (C.3)
az = Z[@(Zl_a))+@(z2_w)] - [¢(z2 — w) — $(z1 — w)]

+i,0 cost — ¢) (dz1\ 2 dIna N i d[pcos6 — ¢)]
4r dx dx r dx '

Here parameterp and¢ are related by
X
pCOSp = 3 post —¢) = =7 f.

Parameters, 0, f, » are defined by (B.9), (B.14). Operato@;, j = 1, 2 are projectors:
Q% = Q;. Their images coincide with those &: ImQ;, =Im P; =¢; - C.

All matrices and parameters listed above dependrona the single functionzy(x).
Compatibility condition (5.2) gives rise to the following nonlinear ordinary differential
equation of the fourth order on the functien(x):

d |:xf2— xf dinxa  f  xdf

d 2
dx 4,(2/1)2F—7—;E]Ha[@(m)ij(a—w)]jtf =0. (C.4)
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This equation can be written in the Lagrangian form (5.4), (5.5).

Representations described above can be derived from (4.5), (4.10), (5.1), (5.2), (5.3)
in the same manner, analogous to the results in appendix A. Here we shall prove only
statement (C.1), and obtain the boundary condition for equation (C.4) in the origin.

Let C? be the two-dimensional linear space of vectors (columns), where matrices
X (z; x), U(z; x) operate as linear operators. Eq@p by the inner product, ) defined by

/
(¢, ¢y = c1c] + c2ch c,c e C? cz(cl) d:(c,l).

c2
Let us consider the matrig (z; x) given by
B(z;x) = X" (—2: 1) X (z; x)

whereX” (—z; x) is the transpose of the matri(—z; x). Itis easy to derive from properties
of X (z; x) stated in problem II, that the matri&(z; x) is elliptic in z with periods 2, «'.
Its single (second-order) pole iry lies in the origin, and

E(w;x)=1 kerE(zj;x) =¢; - C j=12
The second equality follows from (4.14), (B.10). Summarizing the above properties of
E(z; x), we can rewrite it in the form

E(z;x) =1 + Eo(0)[p (2) — o ()]

where Eq(x) is the symmetric matribE] (x) = Eo(x) with eigenvectorg; and eigenvalues

[p (@) — ()], j =1, 2. Since these eigenvalues, generally speaking, do not coincide,
eigenvectors; are orthogonal to each other, i.e.=9 (e, e2) = 1 — €. So, only two
values for & are allowed

#=1 o &=-1 (C.5)

anda does not depend on The second possibility in (C.5) can be eliminated by evaluation
of matricesX (z; x), U(z; x) near the pointt = 0, which provides, also, the boundary
condition for the differential equation (C.4).

At x = 0, T = 0 problem Il can be solved explicitly in quasiperiodigfunctions (4.2):

0 — p@) ~ilp(@) + iz
X(2:0) = T() (—i[,O(z) tiro™] —[p@)+ Ziﬂw‘ll) (0
where

_ o 91z — 20)/20] 1(3)

= e )

p(2) =[£G — 20) — Lo — z0)] — L= F T

20=w/2 n = ¢(w).

Matrix (C.6) degenerates at= zo = w/2: X(z0; 0) ~ 03 —io1. S0, atx = 0 points
z1(x) andz,(x) merge inzo. For smallx we assume the expansion

z12(x) =20 £ c/x(L+vx +--). (C.7)
Substituting (C.7) and (B.8) into (4.10) we find for=0

w

H 2
Uz 0) = lzos[az —0) = £~ 0] = S ~ 20 ~&or) + Up.
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Now, let us rewrite relation (4.5) in the form

X i
2 _xu+Losx (C.8)
ox 2
and setx = 0 in it. The left-hand side is analytical in at the pointszg and w. The
right-hand side has the second-order polegnand the first-order pole im. Equating to

zero corresponding singular terms in the right-hand side of (C.8), we obtain

—(Z 1Z)2:e“:1 atx =0
. T <0
1
Gz STV <

1 T
m v = 5 8w
Combining (C.9) with (C.5) we complete proof of (C.1). Expansion (C.7) with obtained
andv gives the boundary condition (5.8) for the differential equation (C.4).
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