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The Landau–Lifshitz equation describes the Ising spin
correlation function in the free-fermion model
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Institute of Physics of Solids and Semiconductors, P Brovki 17, Minsk, Belarus

Received 19 March 1998

Abstract. We consider time and space dependence of the Ising spin correlation function in a
continuous one-dimensional free-fermion model. By the Ising spin we imply the ‘sign’ variable,
which takes alternating±1 values in adjacent domains bounded by domain walls (fermionic
world paths). The two-point correlation function is expressed in terms of the solution of the
Cauchy problem for a nonlinear partial differential equation, which is proved to be equivalent
to the exactly solvable Landau–Lifshitz equation. A new zero-curvature representation for this
equation is presented.

In turn, the initial condition for the Cauchy problem is given by the solution of a nonlinear
ordinary differential equation, which has also been derived. In the Ising limit the above-
mentioned partial and ordinary differential equations reduce to the sine-Gordon and Painlevé III
equations, respectively.

1. Introduction

In this paper we continue to study correlation properties of spinless nonrelativistic fermions,
which propagate in a line and can appear and annihilate in pairs. The model Hamiltonian
is given by [1]

E =
∫ ∞
−∞

dx

{
µψ+ψ + dψ+

dx

dψ

dx
+ ig

(
dψ+

dx
ψ+ + dψ

dx
ψ

)}
(1.1)

whereψ(x) and ψ+(x) are canonical Fermi fields:{ψ(x), ψ+(x ′)} = δ(x − x ′). The
chemical potentialµ takes discrete±1 values, whereas the parameterg is continuous:
0 6 g 6 ∞. A typical pattern of fermionic world paths is shown in figure 1. Well
known parallelism of the quantum field theory and statistical mechanics [2, 3] allows one
to interpret such patterns as possible configurations of domain walls in a two-dimensional
statistical mechanical system. The Euclidean time variableτ is then treated as the second
space variable in the plane. Let us supposeZ2 symmetry is broken in domains, and denote
by σ(x, τ ) the corresponding order parameter—Ising spin, which takes alternating±1 values
in adjacent domains (see figure 1). The subject of our interest is the two-point correlation
function of the Ising spin order parameter

P(x, τ ) = 〈σ(x, τ )σ (0, 0)〉. (1.2)

Here〈〉 denotes either the ground-state average in the fermionic model, or the Gibbs average
in its statistical mechanical counterpart.
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Figure 1. Fermion world paths (= domain walls) and Ising spins corresponding to Hamiltonian
(1.1). At points 1 and 2 the total number of fermions changes.

The problem outlined above is motivated by the theory of the incommensurate soliton
liquid phase, which takes place in lattices of atoms adsorbed on a crystalline substrate [4, 5].
In the simplest case the substrate forms an anisotropic periodical potential relief for adsorbed
atoms, sayV0 cos(2πx/b). The commensurate phase is characterized by an integerp equal
to the ratio of the lattice periods of the adsorbed atoms and the substrate potential. If
p = 2, there are two equivalent-in-energy configurations of the overlay lattice shifted with
respect to one another by the substrate lattice periodb. So, the commensurate phase beingZ2

degenerated can be characterized by the Ising spin order parameterσ ≡ exp(π iux/b) = ±1,
whereux is the displacement of the lattice of adsorbed atoms.

As the concentration of adsorbed atoms changes, they undergo the transition into the
incommensurate phase. Closely enough to the transition point, the incommensurate phase
may be conceived as commensurate regions whereσ = 1 and σ = −1 separated by
domain walls. At zero temperature, domain walls are parallel to they-axis and form a
periodical lattice in thex-direction incommensurate with the substrate periodicity. At a
finite temperature, domain walls bend and collide with each other. So, the generic state
looks like the pattern in figure 1. Points 1, 2 in figure 1, where a domain wall turns backward,
correspond to dislocations in the lattice of adsorbed atoms [5, 6]. It is clear, that fermionic
models provide a convenient and powerful tool for looking into the physics discussed above,
and indeed they have been widely used [5–8]. Calculations of thermodynamic quantities and
correlation functions of fermionic fields (i.e. fermionic Green functions) become especially
simple in free-fermion models. On the other hand, the observable quantity is the Ising spin
order parameterσ(x, τ ), rather than fermionic fields. Indeed, x-ray or neutron scattering
experiment measures thek-dependent susceptibilityχ(k) being just the Fourier transfer of
the correlation function (1.2).
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Generally speaking, interpretation of scattering experiments in incommensurate crystals
is known to be quite a difficult problem, especially near the phase transition point [9, 10].
So, it is desirable to find the exact correlation functionP(x, τ ) and its Fourier transform
χ(k) for the soliton liquid phase, at least in a simple free-fermion model (1.1).

Before proceeding to the results obtained, it is worthwhile to make two notations
concerning this model.

(i) Values µ = +1 and µ = −1 of the chemical potential correspond to ordered
(commensurate), and disordered (incommensurate) phases, respectively. A well pronounced
soliton lattice appears in the disordered phaseµ = −1 for small enough values ofg:
g � 1. Correlation function (1.2) in this case is essentially anisotropic and oscillates in
x. For g = 0 it is known [11], that the leading term in the large-distance asymptotics of
(1.2) is proportional tox−1/2 sinx. In the opposite limitg → ∞, fermionic model (1.1)
is equivalent to the two-dimensional Ising model in the critical region. Here correlation
function (1.2) reduces to the well known expressions obtained by McCoyet al [12].

(ii) The free-fermion model we consider is closely related with several models studied
in the literature. We shall mention two of them. First, model (1.1) is equivalent to the
XY spin chain in the double scaling limit introduced by Vaidya and Tracy [13]. These
authors discovered oscillatory behaviour of the correlation functions in the double scaling
XY model. Jimboet al [14] calculatedn-point correlation functions of Pauli matrices in
this model and established their relationship to some ordinary differential equation. In the
limit g → 0 their equation reduces to the Painlevé V transcendent. For further details see
[1]. Second, model (1.1) is just the continuous limit of the discrete fermionic model used
by Bohr [6] to describe the effect of dislocations on the commensurate–incommensurate
phase transition near the pointp = 2. In particular, Bohr calculated the average Ising spin
value 〈σ 〉 in the ordered (commensurate) phaseµ = 1. In the continuous limit his result
reduces to〈σ 〉 = (1+ g2)−1/8.

Several techniques have been developed to determine correlation functions in exactly
solvable models [15, 16]. One of them [16] involves three steps. (i) The correlation
function is expressed as the determinant of a Fredholm integral operator. (ii) Determinant
representation is then used to write down a nonlinear differential (or integro-differential)
equation associated with the correlation function. (iii) The large-distance asymptotics of
the correlation function are analysed by use of the obtained equation and related Riemann–
Hilbert problem.

In the previous paper [1] we completed step (i), and started to perform step (ii). Namely,
for model (1.1) the determinant representation for the correlation function (1.2) was obtained
in both orderedµ = 1 and disorderedµ = −1 phases. In the ordered phaseµ = 1 we
asserted without proof a relationship of the correlation function (1.2) with a certain nonlinear
partial differential equation.

This paper is devoted to the second step, which is completed here for both phases
µ = ±1. The emphasis is on the more complicated and physically interesting disordered
phaseµ = −1. In the half-planeτ > 0, −∞ < x < ∞, we derive the Cauchy problem,
which determines the correlation functionP(x, τ ). The Cauchy problem consists of the
nonlinear partial differential equation, and initial conditions for it.

The partial differential equation describing evolution of the correlation functionP(x, τ )
in τ is the same as that obtained previously in the ordered phase [1]. We prove, that this
equation is equivalent to the well known exactly solvable Landau–Lifshitz equation, which
describes a classical anisotropic one-dimensional ferromagnet [17–19].

The initial condition on the lineτ = 0, −∞ < x <∞ for the Cauchy problem is given
by the solution of a nonlinear ordinary differential equation of the fourth order. In the Ising
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limit g→∞ it reduces to Painlev́e III in agreement with McCoyet al [12].
The paper is organized as follows. In section 2 we describe briefly the determinant

representation forP(x, τ ). We then expressP(x, τ ) in terms of the solution of the related
Fredholm integral equations. In section 3 we formulate the Riemann–Hilbert problem, which
is equivalent to the above mentioned equations. In section 4 the obtained Riemann–Hilbert
problem is used to derive a matrix identity, which provides the zero-curvature representation
for an exactly solvable nonlinear partial differential equation. Similar analysis performed
in section 5 for the caseτ = 0 leads to a nonlinear ordinary differential equation. Results
obtained in sections 2–5 relate to the disordered phaseµ = −1. Section 6 describes their
modification in the ordered phaseµ = 1.

We put some cumbersome formulae and extended computations into the appendices.
In appendix A we prove the equivalence of the obtained nonlinear partial differential
equation with the Landau–Lifshitz equation. In appendix B we derive explicit expressions
for elliptic matrices providing the zero-curvature representation for the above-mentioned
equation. Elliptic matrices, which are related to the ordinary differential equation described
in section 5, are given in appendix C.

2. Determinant formulae and integral equations

It is usual practice to start studying correlation functions in exactly solvable models by
expressing these functions as determinants of Fredholm linear integral operators [16]. For
the correlation function (2.1) such a determinant representation was obtained in [1]. Here
we describe this representation and then use it to express the logarithmic derivative of the
correlation function in terms of solutions of linear Fredholm integral equations of the second
kind.

First of all, a remark concerning notation is necessary. The Hamiltonian (1) in [1]
seems at first sight somewhat more general than (1.1). However, the former reduces to the
latter after rescalingx → xl0, ψ → ψ/

√
l0, ψ+ → ψ+/

√
l0, E → E |�|, if l0 = (s/|�|)1/2,

µ = sign(�), g = 0/(4s|�|)1/2.
We denote byσ̂ (x) the unitary operator̂σ(x), corresponding to the Ising spin order

parameterσ(x, τ ). This operator can be written in terms of the fermionic fields [1]

σ̂ (x) = exp

{
iπ
∫ x

−∞
dx ′ψ+(x ′)ψ(x ′)

}
where the boundary conditionσ(x, τ )→ 1 for x → −∞ is supposed. Relation (1.2) then
takes the form

P(x, τ ) = 〈8|Û (−τ)σ̂ (x)Û(τ )σ̂ (0)|8〉. (2.1)

Here |8〉 denotes the Hamiltonian ground state,Û (τ ) = e−τE is the Euclidean evolution
operator.

The determinant representation for the correlation function (2.1) in the disordered phase
µ = −1 reads as [1]:P(x, τ ) = limδ→0Pδ(x, τ ), where

Pδ(x, τ ) = C(δ) det[1+ D̂δ(x, τ )].

HereC(δ) is the constant factor,̂Dδ(x, τ ) is the linear integral operator acting on a function
f (p) in the following way

D̂δ(x, τ )f (p) =
∫ ∞
−∞

dk

2π
Dpk f (k) exp{− 1

2ix(p + k)− 1
2τ [w(p)+ w(k)]}
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with

Dpk = 1

p + k
[
A(k)

A(p)
− A(p)
A(k)

]
A(p) =

[
w(p)

p2+ δ2

]1/2

w(p) = [(µ+ p2)2+ (2gp)2]1/2.

The well known procedure [14] allows one to obtain Fredholm integral equations from
determinant formulae. Denote by Tr the trace of a linear integral operator

Tr L̂ =
∫ ∞
−∞

dp

2π
Lpk|k=p

whereLpk is the operator kernel:

L̂f (p) =
∫ ∞
−∞

dk

2π
Lpkf (k).

Differentiating the equality ln det[1+ D̂δ(x, τ )] = Tr ln[1+ D̂δ(x, τ )], we obtain

∂

∂x
lnPδ(x, τ ) = Tr

(
(1+ D̂δ(x, τ ))

−1∂D̂δ(x, τ )

∂x

)
. (2.2)

It is essential for further analysis, that the kernel of the operator∂D̂δ(x, τ )/∂x factorizes(
∂D̂δ(x, τ )

∂x

)
pk

= i

2
[a1(p)a2(k)− a2(p)a1(k)] (2.3)

where

a1(p) = A(p) exp

[
− ixp

2
− τw(p)

2

]
a2(p) = [A(p)]−1 exp

[
− ixp

2
− τw(p)

2

]
.

Combining (2.2) and (2.3) we obtain

∂

∂x
lnPδ(x, τ ) = i

2

∫ ∞
−∞

dp

2π
[u1(p)a2(p)− u2(p)a1(p)] (2.4)

whereuj (p), j = 1, 2 denote solutions of Fredholm integral equations of the second kind:

(1+ D̂δ(x, τ ))uj = aj j = 1, 2. (2.5)

3. Riemann–Hilbert problems

In this section we derive a Riemann–Hilbert problem on the complex torus, which is
equivalent to integral equations (2.5), and then proceed to the limitδ→ 0.

First, let us rewrite equations (2.5) in terms of new variables. Set

vj (p) = uj (p)A(p) exp

[
ixp

2
+ τw(p)

2

]
z(p) =

∫ p

0

dk

w(k)
2ω =

∫ ∞
−∞

dp

w(p)
ω′ =

∫ p1

−p1

dp

w(p)

p1 =
{

i(g −
√
g2− 1) for g > 1

ig +
√

1− g2 for 0< g < 1.
(3.1)

Herez is the new independent variable, 2ω and 2ω′ are the primitive periods of the elliptic
function p(z), p1 is one of four zeros of the functionw2(p) = (p2 − 1)2 + (2gp)2. For
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Figure 2. Fundamental region0 for quasiperiodical functionsvj (z). Poles ofvj (z) are indicated.

g > 1 the period 2ω′ is purely imaginary,=ω′ > 0, <ω′ = 0. For 0< g < 1 the period
2ω′ gains the real part:<ω′ = ω. In the new notation equations (2.5) read as

vj (z) = ãj (z)+
∫ ω

−ω

dz′

2π

w(z′)
p(z′)+ p(z)

[
A2(z)

A2(z′)
− 1

]
exp[−ixp(z′)− τw(z′)]vj (z′) (3.2)

wherej = 1, 2, ã1(z) = A2(z), ã2(z) = 1.
Further, denote by0 the open region in thez-plane bounded by the parallelogram of

periods shown in figure 2.

Lemma. Let τ > 0. Then functionsvj (z), j = 1, 2 which solve equations (3.2) can be
analytically continued from the interval(−ω,ω) into the wholez-plane, where they obey
the following conditions.

(i) vj (z+ 2ω) = vj (z).
(ii) vj (z− 2ω′) = vj (z)− 2ivj (z− ω′) exp[ixp(z)+ τw(z)].
(iii) Functionsvj (z) are meromorphic in the open region0.
(iv) Functionsvj (z) have exactly four simple poles in0 in the pointsb1,2 = ±iα,

b3,4 = ±(ω′ − iα), which are the zeros of the function [p2(z)+ δ2]: p(b1) = iδ. Moreover,

Resz=b1vj (z) = Resz=b3vj (z) Resz=b2vj (z) = Resz=b4vj (z).

(v) Except for the polesbi, i = 1, . . . ,4, functionsvj (z) are continuous in0.
(vi) vj (ω) = 1, vj (ω − ω′ + i0) = (−1)j .
Conversely, a pair of functions obeying (i)–(vi) solve equations (3.2).

Remarks.
(1) By virtue of (ii), functionsvj (z) have essential singularities at the points(2n+1)ω+

mω′, n,m ∈ Z, m 6= 0.
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(2) For z→ ω + i0 statement (vi) can be further detailed:

vj (z) = 1− (z− ω)
∫ ∞
−∞

dp

2π
uj (p)[a2(p)− a1(p)] +O(z− ω)2

vj (z− ω′) = (−1)j − (z− ω)
∫ ∞
−∞

dp

2π
uj (p)[a2(p)+ a1(p)] +O(z− ω)2.

(3.3)

(3) For real x and τ , functions vj (z) obey the symmetry propertyvj (z; x, τ ) =
v∗j (z

∗,−x, τ ), where∗ denotes the complex conjugation.

Proof of the direct statement of the lemma is straightforward. To prove the converse
statement, we rewrite the integral on the right-hand side of (3.2) as∫ ω+ε

−ω+ε

dz′

4π i

w(z′)
p(z′)+ p(z)

[
A2(z)

A2(z′)
− 1

]
[vj (z

′ + ω′)− vj (z′ − ω′)]

=
∫
∂(0+ε)

dz′

4π i

w(z′)
p(z)− p(z′)

[
− A

2(z)

A2(z′)
− 1

]
vj (z

′). (3.4)

Here ε is a small positive number, the parallelogram(0 + ε) is obtained from0 by
translation inz′ by ε, ∂(0 + ε) denotes the parallelogram boundary. In deriving (3.4)
we used (i), (ii) and the translation property common for the functionsp(z), w(z), and
A2(z): f (z + ω′) = −f (z), wheref = p,w,A2. Nine poles (in thez′ variable) of the
integrand on the right-hand side of (3.4) arebi, i = 1, . . . ,9. Four of them were given in
(iv), and the remaining five are

b5 = z b6 = ω′ − z b7 = ω b8 = ω − ω′ b9 = ω + ω′.
Among these poles onlyb5, b7, b8 and b9 contribute to the integral. Really, residues
in b1,2 cancel with those inb3,4 owing to (iv), and the residue inb6 vanishes since
A2(z) = −A2(ω′ − z). Contributions from polesb5 andb7 give vj (z) and [−1−A2(z)]/2,
respectively. We have taken into account (vi) and equalityA2(ω) = 1. A more subtle
analysis is needed for poles inb8 and b9, which lie in the integration contour∂(0 + ε).
Near these points, integrals in (3.4) must be understood in the sense of the Cauchy principal
value. Alternatively, we may divide poles inbi , i = 8, 9 into two parts according to the
Plemel formula

1

z− bi →
1

2

[
1

z− bi + i0
+ 1

z− bi − i0

]
.

Poles in(b8 − i0) and in (b9 + i0) are removed from(0 + ε). The total contribution of
poles in(b8 + i0) and in (b9 − i0) is [−1+ A2(z)](−1)j /2. Collecting all terms coming
from b5, b7, (b8+ i0) and(b9− i0), we obtainvj (z)− ãj (z), completing the proof.

Thus, conditions (i)–(vi) characterize functionsvj (z) completely. These conditions can
be reformulated as a Riemann–Hilbert problem. We set

X(z) = 1

2

(
v1(z) v2(z)

v1(z− ω′) v2(z− ω′)
)(

1 −1
1 1

)
.

Denote by0+ the upper half of the parallelogram0, i.e. 0+ = {z ∈ 0|=z > 0}. In terms
of the matrixX(z) statements (i)–(vi) of the lemma transforms to the following.

Problem I.
(i) X(z+ 2ω) = X(z).
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(ii) X(z− ω′) = M(z)X(z) where

M(z) =
(

0 1
1 −2i exp[ixp(z)+ τw(z)]

)
. (3.5)

(iii) X(z) is meromorphic in the open region0+.
(iv) X(z) has exactly two simple poles in0+ at the pointsb1 = iα andb3 = ω′ − iα,

which are the zeros of the function [p(z)− iδ]. Moreover, Resz=b1X(z) = Resz=b3X(z).
(v) Except for the polesb1, b3, X(z) is continuous in0+.
(vi) X(ω + i0) = I , whereI is the unit matrix.

Conditions (i)–(vi) for the matrixX(z) define the Riemann–Hilbert problem in the
complex torus. By construction, this problem is equivalent to the integral equations (3.2).
Let

X(z) = I +
∞∑
m=1

(z− ω)m
m!

Xm (3.6)

be the asymptotic expansion of the matrixX(z) at z = ω for z ∈ 0+. Then, combining
(2.4) and (3.3), we have

∂

∂x
lnPδ(x, τ ) = − i

2
tr(X1σ3) (3.7)

where trA denotes the trace of a 2× 2 matrixA: trA = A11+ A22. We use the standard
notation for the Pauli matrices

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
.

Now let us proceed to the limitδ→ 0. It is clear, that in this limit the matrixX(z; x, τ )
still satisfies conditions (i), (ii) and (vi). However, conditions (iii) and (iv) must be modified,
since the poles located at±iα merge to the origin to the limitδ → 0. One could expect
to obtain the second-order pole as a result. However, accurate analysis of equations (3.2)
shows that in fact the limiting matrixX(z; x, τ ) has the first-order pole at the originz = 0.

Thus, the Riemann–Hilbert problem which defines the matrixX(z) in the limit δ → 0
is as follows.

Problem II.
(i) X(z+ 2ω) = X(z).
(ii) X(z− ω′) = M(z)X(z) whereM(z) is given by (3.5).
(iii) X(z) is meromorphic in the open region01 shown in figure 3.
(iv) The single pole ofX(z) in 01 is simple and lies in the originz = 0.
(v) Except for the originz = 0, X(z) is continuous in01.
(vi) X(ω + i0) = I .

Remark.If τ = 0 andx > 0, thenX(z) = σ1X
∗(z∗)σ1.

In the limit δ → 0, relation (3.7) expresses the logarithm derivative of the correlation
functionP(x, τ ) in terms of the solution of the Riemann–Hilbert problem II. From here on
we shall refer (i)–(vi) to corresponding items in problem II.
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Figure 3. Fundamental region01 for matrix X(z) in the limit δ → 0. Poles ofX(z) are
indicated.

4. Connection with partial differential equations

In this section we study the dependence onx andτ of the matrixX(z; x, τ ), which solves
problem II. In what follows we shall also use the abbreviated notationX(z) for this matrix.

First, let us consider the function detX(z). Since detM(z) = −1, conditions (i)–(vi)
ensure, that detX(z) is the elliptic function having in01 a single second-order pole at the
origin. Translation properties of detX(z) are: detX(z) = detX(z+2ω) = −detX(z+ω′).
Therefore, detX(z) can be factorized as

detX(z; x, τ ) = C(x, τ)ϑ1

[
z− z1(x, τ )

2ω

]
ϑ1

[
z− z2(x, τ )

2ω

]
[ϑ1(z/2ω)]

−2 (4.1)

with

ϑ1(u) = i exp

[
−iπ

(
u− τ̃

4

)]
ϑ3

(
u+ 1− τ̃

2

)
ϑ3(u) =

∑
n∈Z

exp(2π inu+ π in2τ̃ )

(4.2)

and

z1(x, τ )+ z2(x, τ ) = ω. (4.3)

Hereϑ1,3(u) are θ -functions with the quasiperiod̃τ = ω′/(2ω), the coefficientC(x, τ) is
determined by the relation detX(ω + i0) = 1. So, the matrixX(z) degenerates (having
rank 1) at the pointsz1,2(x, τ ) + 2nω + mω′, (m, n ∈ Z), which are related by (4.3) and
move under changes ofx andτ .

Define four 2×2 matricesE(z; x, τ ), Y (z; x, τ ), U(z; x, τ ), V (z; x, τ ), or in abbreviated
notation,E(z), Y (z), U(z), V (z):

E(z) = exp
(
−σ3

2
(ixp(z)+ τw(z))

)
Y (z) = E(z)X(z) (4.4)

U(z) = Y−1(z)
∂Y (z)

∂x
= − ip(z)

2
X−1(z)σ3X(z)+X−1(z)

∂X(z)

∂x
(4.5)

V (z) = Y−1(z)
∂Y (z)

∂τ
= −w(z)

2
X−1(z)σ3X(z)+X−1(z)

∂X(z)

∂τ
. (4.6)

Translation properties of the above matrices are

E(z) = E(z+ 2ω) = [E(z+ ω′)]−1
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Y (z) = Y (z+ 2ω) Y (z− ω′) = Y (z)
(

0 1
1 −2i

)
U(z) = U(z+ 2ω) = U(z+ ω′) (4.7)

V (z) = V (z+ 2ω) = V (z+ ω′). (4.8)

Moreover, matricesU(z) and V (z) are meromorphic in thez-plane and, hence, elliptic.
Relations (4.5), (4.6) can be rewritten

∂Y (z; x, τ )
∂x

= Y (z; x, τ )U(z; x, τ ) ∂Y (z; x, τ )
∂τ

= Y (z; x, τ )V (z; x, τ )

as a system of linear differential equations for the matrixY (z; x, τ ). Its compatibility
condition

∂U(z; x, τ )
∂τ

− ∂V (z; x, τ )
∂x

+ [V (z; x, τ ), U(z; x, τ )] = 0 (4.9)

has the form of the zero-curvature relation, which is crucial in the Faddeev’s school version
of the inverse scattering method [17].

It follows from (4.5), (4.6), (4.1) that elliptic matricesU(z), V (z) have in01 a stable
pole inω, and two simple moveable poles at the pointsz1(x, τ ), z2(x, τ ) related by (4.3).
Combining (vi) with (4.4)–(4.8), we come to representations

U(z) = i

2
σ3ζ(z− ω)− P1

∂z1

∂x
ζ(z− z1)− P2

∂z2

∂x
ζ(z− z2)+ U0 (4.10)

V (z) = −1

2
σ3℘(z− ω)+ Bζ(z− ω)− L1

∂z1

∂τ
ζ(z− z1)− L2

∂z2

∂τ
ζ(z− z2)+ V0 (4.11)

with

P1
∂z1

∂x
+ P2

∂z2

∂x
= iσ3

2
(4.12)

L1
∂z1

∂τ
+ L2

∂z2

∂τ
= B. (4.13)

Here℘(z) is the Weierstrass elliptic function with primitive periods 2ω andω′, andζ(x)
is the correspondingζ -function. Since rankY (zj ) = 1, j = 1, 2, operatorsPj , Lj are
projectors:P 2

j = Pj , L2
j = Lj . Furthermore, images ofPj andLj coincide:

ImPj = ImLj = kerY (zj ) = kerX(zj ). (4.14)

Relations (4.3), (4.5), (4.6), (4.9), (4.1) allow us to obtain explicit expressions (B.8)–(B.12)
for matricesPj , Lj (j = 1, 2), U0, V0. As shown in appendix B, these matrices depend
on x and τ via two functionsz1(x, τ ), and α(x, τ ), which solve the following dynamic
equations

ż1 = −4r2α′z′1 (4.15)

α̇ = 1

2
[℘(z1)+ ℘(z1− ω)+ ℘(ω)] + f

16(z′1)2r2

[
z′′1

2rz′1
− 2r

∂ ln λ

∂x

]
+f

2

2
− 1

2

∂

∂x

(
f

r

)
− (1+ 2r2)

(
∂α

∂x

)2

(4.16)

where r, f and λ are given by (B.14). Partial derivatives with respect tox and τ are
denoted by prime and dot, respectively.

The inverse statement is also valid.
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Theorem. Let functionsz1(x, τ ) and α(x, τ ) solve equations (4.15), (4.16). Let 2× 2
matricesU(z; x, τ ), V (z; x, τ ) be given by relations (4.10), (4.11), (B.8)–(B.12), (4.3).
Then these matrices obey (4.9).

So, equations (4.15), (4.16) allow the zero-curvature representation (4.9), which
indicates their integrability by the inverse scattering method [17]. The standard procedure
described in [17] leads to the infinite set of integrals of motion:In, n = 1, . . . ,∞. The
first one is given by

I1 =
∫ ∞
−∞

dxH(x) (4.17)

where

H(x) = 1

2

{
π2[1+ 4(z′1)

2]

4
+ f 2− ℘(z1)− ℘(z1− ω)− ℘(ω)

}
π(x, τ ) = iα′(x, τ )/z′1(x, τ ).

(4.18)

Up to this point we considered evolution in the Euclidean timeτ . Now it is convenient to
pass to the ‘Minkowski’ case replacing everywhereτ by−it , wheret is the new (real) time
variable. Consider (4.17) as the Hamiltonian of a classical evolution model with coordinate
z1(x) and momentumπ(x) variables. The canonical Poisson brackets are supposed

{π(x1), z1(x2)} = δ(x1− x2).

As one can verify by straightforward calculation, Hamiltonian equations of the model (4.17),
(4.18) are equivalent to equations (4.15), (4.16).

The Hamiltonian density (4.18) can be rewritten in a more symmetric form

H(x) = π2[1+ 4(z′1)
2]

8
+ 2(z′′1)

2

1+ 4(z′1)2
+ 1+ 12(z′1)

2

8
℘̃
(
z1− ω

2

)
− ℘̃(ω/2)

8
+ ∂

2 ln λ

∂x2

(4.19)

where℘̃(z) denotes the Weierstrass function with periodsω,ω′/2. The two last terms in
(4.19) do not contribute to the equations of motion.

Another convenient parametrization of the model (4.17), (4.18) is

u = 1

2g
[℘(z1)+ ℘(z1− ω)+ ℘(ω)]1/2 = 1

2g

d lnp(z1)

dz1
k2 = g2

g2+ µ
x = x̃

2
√
g2+ µ

t = t̃

4(g2+ µ) (4.20)

L = 1

2

∫ ∞
−∞

dx̃

{
u̇2− [u′′ + 1

8dR/du]2

[(u′)2+ 1
4R]

+ k2u2

}
where

R(u) = (1− u2)(1− k2u2). (4.21)

It is shown in appendix A, that the Lagrangian model (4.20) is equivalent to the
complex generalization of the Landau–Lifshitz model, for which exact integrability is well
known (see [17–19]). So, equations (4.15), (4.16) are equivalent to the Landau–Lifshitz
equations describing a classical one-dimensional anisotropic ferromagnet. Zero-curvature
representation for the Landau–Lifshitz model was obtained in papers [20, 21]. According
to the above analysis, relation (4.9) with matrices (4.10), (4.11) gives an alternative zero-
curvature representation for the same model. It should be noted, that our representation is
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quite different from that known in the literature [17]. In particular, in our representation
poles of matricesU(z) andV (z) move in thez-plane with varyingx and t . In contrast,
the standard zero-curvature representation for the Landau–Lifshitz model employs matrices
with immovable poles.

Returning to the correlation functionP(x, τ ), let us differentiate relation (3.7) with
respect tox, and evaluate trσ3∂X1/∂x by the use of (B.6). After straightforward calculations
we obtain, finally

∂2 lnP(x, τ )
∂x2

= − 1
2H(x) (4.22)

whereH(x) is given by (4.18) or (4.19). Thus, the second logarithm derivative of the
quantum correlation functionP(x, τ ) is proportional to the Hamiltonian density of the
nonlinear classical model (4.17), (4.19). This model is equivalent to the Landau–Lifshitz
model (A.1)–(A.3) describing the anisotropic one-dimensional ferromagnet.

5. Initial conditions

Equations (4.15), (4.16) describe evolution inτ of parametersz1(x, τ ) andα(x, τ ) in the
region−∞ < x <∞, τ > 0. Here we considerx-dependence of these functions atτ = 0,
i.e. the initial conditions for equations (4.15), (4.16). Throughout this section parameterτ

will be omitted implyingτ = 0.
We start from the problem II, settingτ = 0, x > 0 in it. Let us introduce a new elliptic

matrixW(z; x):
W = Y−1∂Y

∂z
= − ixw

2
X−1σ3X +X−1∂X

∂z
(5.1)

with periods 2ω, ω′. The system of linear differential equations

∂Y

∂x
= YU ∂Y

∂z
= YW

is compatible under the condition

∂W

∂x
− ∂U
∂z
+ [U,W ] = 0. (5.2)

The following expansion

W = − ix

2
℘(z− ω)σ3+ Aζ(z− ω)− ζ(z)+Q1ζ(z− z1)+Q2ζ(z− z2)+W0 (5.3)

with

A = I −Q1−Q2

is analogous to (4.10), (4.11). MatricesQ1,Q2, A,W0 depend onx, but not on z.
Evaluations analogous to those described in appendix B allow one to determine the matrix
W(z, x), and to obtain independently the matrixU(z; x). Explicit expressions for these
matrices are given in appendix C. They depend onx via the functionz1(x), which solves
the following nonlinear ordinary differential equation of the fourth order:

δS
δz1(x)

= 0 (5.4)

where the action functionalS is given by (cf (4.19)):

S =
∫

dx x

{
2(z′′1)

2

1+ 4(z′1)2
+ 1+ 12(z′1)

2

8
℘̃
(
z1− ω

2

)}
. (5.5)
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Recall, that periods of the Weierstrass function℘̃(z) are reduced by a factor of 2 compared
with those of℘(z).

It should be noted, that in the Ising limitg → ∞ action (5.5) reduces to that of the
Painlev́e III transcendent:

S →
∫

dx x

[
(φ′)2

2
+ cosh(2φ)

]
(5.6)

in agreement with McCoyet al [12]. Really, in this limit we haveω′/ω→ 0, and

℘̃
(
z1− ω

2

)
≈ 8

3
(2g2− 1)+ 8 cosh(8gz1) (5.7)

for z1 lying near the imaginary axis. Substitutingz1(x) = φ(x)/4g and (5.7) into (5.5), we
obtain (5.6) to the leading (zero) order ing−1†.

The pointx = 0 is critical for the differential equation (5.4). The boundary condition
at this point for the functionz1(x) reads as (see appendix C):

z1(x)x→+0 = ω

2
+
√
ωx

π

[
1+ π

4ω

(
2ωη

π2
− 1

2

)
x +O(x2)

]
(5.8)

whereη = ζ(z; 2ω,ω′)z=ω.
Equation (5.4) supplied with the boundary condition (5.8) determines the functionz1(x)

completely in the interval 0< x < ∞. According to remark (3) on page 6195 and
the remark on page 6196, the functionz1(x) can be continued to negativex by setting
z1(x) = z1(−x). So, the initial conditionz1(x) for the functionz(x, τ ) is determined in the
whole axis−∞ < x <∞. Initial conditions for another function in (4.15), (4.16) must be
taken asα(x, τ )τ=0 = 0 (see appendix C).

6. Ordered phase

So far we considered the correlation functionP(x, τ ) in the disordered phaseµ = −1.
However, minimal changes are needed to extend the results obtained to the ordered phase
µ = +1. These are listed below for completeness.
• In the ordered phase, the determinant representation forP(x, τ ) is given by relation

(20) in [1]. Unlike the disordered phase, any limiting procedure is not needed.
• The logarithm derivative of the correlation function is still related by (3.7) to the

matrixX(z) solving the Riemann–Hilbert problem, which is almost the same as problem II.
The only difference is in the position of the simple pole of the matrixX(z). Now the pole
lies at the pointz = ω + ω′

2 , instead of the origin. This implies, in turn, that degenerate
pointsz1,2 of the matrixX(z) are now related byz1(x, τ )+ z2(x, τ ) = −ω+ω′. This also
induces small changes in matricesU(z), V (z),W(z) which we shall not specify here. It
should be noted, that in the ordered phase explicit expressions for zeros ofw(p) change.
In particular, relation (3.1) now transforms top1 = i(

√
g2+ 1− 1).

• Relations (4.22), (4.19), (5.4), (5.5), (5.8) which connect the correlation function to
the Cauchy problem are still valid. The only change is in the first term in the right-hand
side of (5.8). Hereω/2 should be replaced by(−ω + ω′)/2.

† Similarly, the model defined by the Hamiltonian density (4.19) reduces to the sine-Gordon model in the limit
g→∞. For the Landau–Lifshitz model this result is well known [17].
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Appendix A

In this appendix we prove equivalence of the model defined by the Lagrangian (4.20) to
the complex generalization of the Landau–Lifshitz model of the biaxial one-dimensional
ferromagnet.

The Landau–Lifshitz model is defined by the Hamiltonian density [17]

HLL (x) = 1

2

[(
∂S

∂x

)2

− J (S)
]

(A.1)

whereS(x) = (S1(x), S2(x), S3(x)) is a real vector on a unit sphereS(x) ∈ S2 ⊂ R3:

S2(x) =
3∑
a=1

S2
a (x) = 1 (A.2)

J (S) is the diagonal quadratic form

J (S) = J1S
2
1 + J2S

2
2 + J3S

2
3

J1 6 J2 6 J3 J1+ J2+ J3 = 0.

The equation of motion is a Hamiltonian

Ṡ = {HLL,S}
whereHLL is the Hamiltonian:HLL =

∫
dx HLL (x). The Poisson structure is induced by

the Poisson brackets

{Sa(x), Sb(y)} = −εabcSc(x)δ(x − y). (A.3)

Hereεabc is the antisymmetric tensor normalized asε123 = 1. The model described above
is known as a ‘universal’ (in a certain sense) integrable model, which contains sine-Gordon
and nonlinear Schrödinger models as the limiting cases. We shall consider the complex
generalization of the model (A.1)–(A.3) supposing, thatS(x) is a vector on acomplexunit
sphere (A.2):S2 ⊂ C3 .

First, let us introduce variables9(x) and9∗(x) on the sphere by the relations

9 = S1+ iS2

(1− S3)1/2
9∗ = S1− iS2

(1− S3)1/2
.

Since the Poisson bracket on these functions is canonical

{9(x),9∗(y)} = −iδ(x − y)
apart from the factor−i, the action functionalS for the model (A.1)–(A.3) can be written
as

S =
∫ t2

t1

dt
∫

dx L(x, t)

with the Lagrangian densityL(x, t) given by

L = −i9∗9̇ −HLL .

Next, rewrite this Lagrangian density in terms of another pair of variablesq(x) and
q∗(x) which gives the stereographic projection of the sphereS2:

S1+ iS2 = 2q

1+ qq∗ S1− iS2 = 2q∗

1+ qq∗ S3 = 1− qq∗
1+ qq∗
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or, equivalently

9 =
[

2q

q∗(1+ qq∗)
]1/2

9∗ =
[

2q∗

q(1+ qq∗)
]1/2

.

The resulting expression takes the form

L ' − 2iq̇

q(1+ qq∗) − 2
(q ′/q)′

(1+ qq∗) + 2
q∗(q ′)2

q(1+ qq∗)2 −
1

2

(J2− J1)(q
2+ q∗2)+ 6J3qq

∗

(1+ qq∗)2 .

(A.4)

Equivalence' implies, that we ignore terms having the structure of full derivatives in time
or in coordinate. It should be pointed out, that variablesq and q∗ which were complex
conjugate to each other whenS(x) ∈ R3, become independent in the considered complex
caseS(x) ∈ C3. Varying the action corresponding to the Lagrangian density (A.4) with
respect toq∗, one obtains

(−iq̇ − q ′′)(1+ qq∗)+ 2q∗(q ′)2− J2− J1

2
(q3− q∗)+ 3

2J3q(1− qq∗) = 0. (A.5)

This representation of the Landau–Lifshitz equation has been widely used in the study of
its soliton and multisoliton solutions (see [18] and references therein). Eliminatingq∗(x)
from the Lagrangian density (A.4) by the use of (A.5), we find after some algebra

L ' −1

2

u̇2− [u′′(x)+ 1
2(dP (u)/du)]

2

[u′2(x)+ P(u)] − (J2− J1)u
2

2
. (A.6)

Here we have denoted

P(u) = J2− J1

4
(1+ u4)− 3J3

2
u2 u = 1/q.

Rescaling of variables

u→
√
ku x →

√
k

J2− J1
x t → k

J2− J1
t L→−

√
J2− J1

k
L

with k obeying the relationk2− 6J3
J2−J1

k + 1= 0 tranforms (A.6) into

L ' 1

2

{
u̇2− [u′′(x)+ 1

8 dR (u)/du]2

[u′2(x)+ 1
4R(u)]

+ k2u2

}
whereR(u) is given by (4.21). This is just the Lagrangian density (4.20) obtained in
section 4.

Appendix B

Here we obtain explicit expressions for matricesU(z; x, τ ), V (z; x, τ ) defined by (4.5),
(4.6).

Let us expand these matrices together with the elliptic functionp(z) at the pointz = ω:

U(z) = iσ3

2(z− ω) +
∞∑
n=0

(z− ω)nU(n) (B.1)

V (z) = − σ3

2(z− ω)2 +
∞∑

n=−1

(z− ω)nV (n) (B.2)

p(z) = − 1

z− ω +
∞∑
n=0

(z− ω)2n+1α2n+1. (B.3)
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Substitution of expansions (B.1)–(B.3), (3.6) into (4.5), (4.6) allows one to express the
coefficient matricesU(n), V (n) in terms ofXn. The first few equalities are

V (−1) = iU(0) = − 1
2[σ3, X1] (B.4)

V (0) = 0 − α1σ3

2
(B.5)

U(1) = −i0 − iα1σ3

2
+ ∂X1

∂x
(B.6)

where

0 = −1

4

∂2

∂z2
z=ω
(X−1(z)σ3X(z)) = 1

4[X2, σ3] + 1
2(X1σ3X1−X2

1σ3). (B.7)

Relations (4.10), (4.11) give alternative (finite) expansions for elliptic matricesU(z),

V (z). Taking into account (4.12) and (4.3), one can determine projective operatorsPj in
(4.10) up to two parametersz1 andα:

P1 = r
(

eiθ ieα

−ie−α e−iθ

)
P2 = r

(
e−iθ ieα

−ie−α eiθ

)
. (B.8)

Herer andθ are related toz′1 by

r cosθ = 1
2 r sinθ = (4z′1)−1. (B.9)

One-dimensional images of operatorsPj are generated by vectorsej

ej =
(
γj
1

)
Pjej = ej j = 1, 2 (B.10)

whereγ1,2 = i exp(±iθ + α).
Comparing (4.11) with (B.2), one can see, thatB = V (−1). It is evident from (B.4),

that diagonal entrances of this matrix are zero. Introducing one new parameterl, we can
determine matricesLj andB in (4.11)

L1 =
(

l (1− l)γ1

l/γ1 (1− l)
)

L2 =
(

l (1− l)γ2

l/γ2 (1− l)
)

B = V (−1) = 2ż1 sinθ

(
0 (l − 1)eα

−le−α 0

)
.

(B.11)

Here we have taken into account relations (4.13), (4.14), (B.10).
MatricesU0 andV0 can be obtained from (B.4), (B.5):

U0 = −iB + z′1P1ζ(ω − z1)+ z′2P2ζ(ω − z2)

V0 = 0 − α1σ3

2
+ ż1L1ζ(ω − z1)+ ż2L2ζ(ω − z2)

where the matrix0 defined by (B.7) takes the form

0=
(

B12B21 iB ′12− z′1reα[℘(ω − z1)−℘(ω − z2)]
−iB ′21+ z′1re−α[℘(ω − z1)−℘(ω − z2)] −B12B21

)
.

(B.12)

Relations (B.4), (B.6) have been used in deriving (B.12).
Thus, relations (4.10), (4.11), (4.3), (B.8)–(B.12) give explicit expressions for

matricesU(z; x, τ ), V (z; x, τ ). These matrices depend onx and τ via three functions
z1(x, τ ), α(x, τ ), and l(x, τ ).

Let us substitute the obtained expressions for the matricesU(z; x, τ ), V (z; x, τ ) into the
compatibility condition (4.9). Relations between functionsz1(x, τ ), α(x, τ ), l(x, τ ) can be
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established then by putting equal to zero singular and constant inz terms in (4.9). One can
verify, that all singular terms in (4.9) at the pointz = ω vanish identically. Furthermore,
terms proportional to(z− zj )−2, j = 1, 2 vanish as well. Setting residues inz1, z2 of (4.9)
equal to zero, we derive equations (4.15), (4.16), and equality

(2l − 1)ż1 = 2rz′1f (z1) (B.13)

where

r = [1+ 4(z′1)
2]1/2

4z′1
f = z′′1

2rz′1
+ 2r

∂ ln λ

∂x
λ = ℘(z1− ω)− ℘(z1). (B.14)

Relation (B.13) allows us to eliminate the functionl(x, τ ) from matricesU(z; x, τ ),
V (z; x, τ ). Lastly, the constant term in the Laurent expansion of (4.9) nearz = ω does not
give new constrains onz1(x, τ ), α(x, τ ) vanishing identically.

Appendix C

Here we give explicit expressions for matricesU(z; x) ≡ U(z; x, τ )τ=0 and W(z; x)
associated with the Riemann–Hilbert problem II forτ = 0, x > 0.

ProjectorsP1 andP2 in (4.10) are still described by relations (B.8), where parameterα

is put equal to zero:

expα = 1. (C.1)

The other coefficient matrices in (4.10), (5.3) are as follows.

Q1 = ρ
(

eiϕ iei(θ−ϕ)

−iei(−θ+ϕ) e−iϕ

)
Q2 = ρ

(
e−iϕ iei(−θ+ϕ)

−iei(θ−ϕ) eiϕ

)
A = I −Q1−Q2

U0 = −dz1

dx
P1ζ(z1− ω)− dz2

dx
P2ζ(z2− ω)+ Q1+Q2− I

x

W0 = Ia0+ σ1a1+ σ2a2+ σ3a3

(C.2)

where

a0 = −3η

2
a1 = ρ sin(θ − ϕ)[ζ(z2− ω)− ζ(z1− ω)] + d

dx
[2ρ cos(θ − ϕ)]

a2 = −ρ cos(θ − ϕ)[ζ(z1− ω)+ ζ(z2− ω)] + rx dz1

dx
λ

a3 = ix

4
[℘(z1− ω)+ ℘(z2− ω)] − i tanϕ

2
[ζ(z2− ω)− ζ(z1− ω)]

+ iρ cos(θ − ϕ)
4r

(
dz1

dx

)−2 d lnλ

dx
+ i

r

d[ρ cos(θ − ϕ)]
dx

.

(C.3)

Here parametersρ andϕ are related by

ρ cosϕ = 1
2 ρ cos(θ − ϕ) = −x

4
f.

Parametersr, θ, f, λ are defined by (B.9), (B.14). OperatorsQj, j = 1, 2 are projectors:
Q2
j = Qj . Their images coincide with those ofPj : ImQj = ImPj = ej · C.

All matrices and parameters listed above depend onx via the single functionz1(x).
Compatibility condition (5.2) gives rise to the following nonlinear ordinary differential
equation of the fourth order on the functionz1(x):

d

dx

[
xf 2− xf

4r(z′1)2
d lnλ

dx
− f
r
− x
r

df

dx

]
+ x d

dx
[℘(z1)+ ℘(z1− ω)] + f 2 = 0. (C.4)
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This equation can be written in the Lagrangian form (5.4), (5.5).
Representations described above can be derived from (4.5), (4.10), (5.1), (5.2), (5.3)

in the same manner, analogous to the results in appendix A. Here we shall prove only
statement (C.1), and obtain the boundary condition for equation (C.4) in the origin.

Let C2 be the two-dimensional linear space of vectors (columns), where matrices
X(z; x), U(z; x) operate as linear operators. EquipC2 by the inner product〈 , 〉 defined by

〈c, c′〉 = c1c
′
1+ c2c

′
2 c, c′ ∈ C2 c =

(
c1

c2

)
c′ =

(
c′1
c′2

)
.

Let us consider the matrix4(z; x) given by

4(z; x) = XT (−z; x)X(z; x)
whereXT (−z; x) is the transpose of the matrixX(−z; x). It is easy to derive from properties
of X(z; x) stated in problem II, that the matrix4(z; x) is elliptic in z with periods 2ω,ω′.
Its single (second-order) pole in01 lies in the origin, and

4(ω; x) = I ker4(zj ; x) = ej · C j = 1, 2.

The second equality follows from (4.14), (B.10). Summarizing the above properties of
4(z; x), we can rewrite it in the form

4(z; x) = I +40(x)[℘(z)− ℘(ω)]
where40(x) is the symmetric matrix4T0 (x) = 40(x) with eigenvectorsej and eigenvalues
[℘(ω)− ℘(zj )]−1, j = 1, 2. Since these eigenvalues, generally speaking, do not coincide,
eigenvectorsej are orthogonal to each other, i.e. 0= 〈e1, e2〉 = 1− e2α. So, only two
values for eα are allowed

eα = 1 or eα = −1 (C.5)

andα does not depend onx. The second possibility in (C.5) can be eliminated by evaluation
of matricesX(z; x), U(z; x) near the pointx = 0, which provides, also, the boundary
condition for the differential equation (C.4).

At x = 0, τ = 0 problem II can be solved explicitly in quasiperiodicζ -functions (4.2):

X(z; 0) = ϒ(z)
(

ρ(z) −i[ρ(z)+ iπω−1]
−i[ρ(z)+ iπω−1] −[ρ(z)+ 2iπω−1]

)
(C.6)

where

ϒ(z) = iω

π

ϑ1[(z− z0)/2ω]

ϑ1(z/2ω)

ϑ1(
1
2)

ϑ1(
1
4)

ρ(z) = [ζ(z− z0)− ζ(ω − z0)] − (z− ω)η + π i

ω
z0 = ω/2 η = ζ(ω).

Matrix (C.6) degenerates atz = z0 = ω/2: X(z0; 0) ∼ σ3 − iσ1. So, atx = 0 points
z1(x) andz2(x) merge inz0. For smallx we assume the expansion

z1,2(x) = z0± ς
√
x(1+ νx + · · ·). (C.7)

Substituting (C.7) and (B.8) into (4.10) we find forx = 0

U(z; 0) = i

2
σ3[ζ(z− ω)− ζ(z− z0)] − ς

2

2
℘(z− z0)(I − eασ2)+ U0.
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Now, let us rewrite relation (4.5) in the form

∂X

∂x
= XU + ip

2
σ3X (C.8)

and setx = 0 in it. The left-hand side is analytical inz at the pointsz0 and ω. The
right-hand side has the second-order pole inz0, and the first-order pole inω. Equating to
zero corresponding singular terms in the right-hand side of (C.8), we obtain

1

(z− z0)2
: eα = 1 at x = 0

1

(z− z0)
: ς =

√
ω/π

1

(z− ω) : ν = η

2π
− π

8ω
.

(C.9)

Combining (C.9) with (C.5) we complete proof of (C.1). Expansion (C.7) with obtainedς

andν gives the boundary condition (5.8) for the differential equation (C.4).
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